حل عددی معادلات انتگرال دوبعدی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی صنعتی کرمان - دانشکده علوم و فناوری های نوین
- نویسنده سمانه جهان آرای
- استاد راهنما عظیم ریواز عطااله عسکری همت
- سال انتشار 1392
چکیده
معادلات انتگرال انواع مختلفی دارد. در این پایان نامه معادلات انتگرال دوبعدی و معادلات انتگرال دیفرانسیل دوبعدی مورد بررسی قرار می گیرند. برای این منظور دو روش جدید برای حل معادلات انتگرال دوبعدی و یک روش برای حل معادلات انتگرال دیفرانسیل دوبعدی معرفی می شود. در این روش های عددی از چندجمله ای های چبیشف دوبعدی و ترکیب آن ها با توابع بلاک پالس دوبعدی استفاده می شود. همچنین تعدادی مثال عددی ارائه می شود که دقت محاسبه روش های فوق را نشان می دهد.
منابع مشابه
حل عددی معادلات انتگرال و معادلات انتگرال-دیفرانسیل دوبعدی
در این پایان نامه ابتدا معادلات انتگرال را معرفی خواهیم کرد. سپس به بیان دسته بندی معادلات انتگرال، تعاریف و قضایای مورد نیاز می پردازیم. در فصل دوم، معادلات دیفرانسیل با مشتقات جزئی و چند روش حل این نوع معادلات را بیان می کنیم. در ادامه در فصل سوم به معرفی چندجمله ای های لاگرانژ و حل معادلات انتگرال و معادلات انتگرال-دیفرانسیل یک بعدی توسط این چندجمله ای ها می پردازیم. سرانجام در فصل چهارم چند...
حل عددی معادلات انتگرال ولترای دوبعدی از نوع اول
این پایان نامه،روش تاورا برای یافتن جواب های عددی معادلات انتگرال،برحسب چندجمله ای لژاندرارائه می دهد.معادلات انتگرال مطرح شده، معادلات انتگرال ولترای دوبعدی نوع اول به صورت خطی وغیرخطی ومعادلات انتگرال ولترای دوبعدی نوع دوم به صورت خطی و غیرخطی ومعادلات انتگرال-دیفرانسیل می باشند.ایده اصلی دراین روش استفاده ازماتریس عملیاتی برای انتگرال گیری از توابع می باشد.برای این منظورابتدا با در نظر گرفتن...
بهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملموجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات
این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.
متن کاملحل عددی شکل پایستار معادلات تراکمپذیر دوبعدی و ناآبایستایی جوّ با روش فشرده مککورمک
یکی از زمینههای پژوهشی مورد توجه در ارتباط با حل عددی معادلات حاکم بر جو، افزایش دقت عددی شبیهسازیها میباشد. در این پژوهش روش مککورمک فشرده مرتبه چهارم با پیشروی زمانی رنگ-کوتا مورد توجه قرارگرفته است. روش مککورمک فشرده مرتبه چهارم با پیشروی زمانی رنگ-کوتای چهارمرحلهای برای حل عددی معادلات تراکمپذیر دوبعدی و ناآبایستایی جو مورداستفاده قرارگرفته و نتایج آن با روشهای مککورمک مرتبه دوم و ...
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی صنعتی کرمان - دانشکده علوم و فناوری های نوین
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023